
This information is provided to outline Databricks’ 
general product direction and is for informational 
purposes only. Customers who purchase Databricks 
services should make their purchase decisions relying 
solely upon services, features, and functions that are 
currently available. Unreleased features or functionality 
described in forward-looking statements are subject to 
change at Databricks discretion and may not be 
delivered as planned or at all

Product safe harbor statement



©2024 Databricks Inc. — All rights reserved 2

Project 
Lightspeed 
goes 
Hyperspeed

Karthik Ramasamy
Principal Software Engineer

Ryan Nienhuis, 
Sr. Staff Product Manager



©2024 Databricks Inc. — All rights reserved 3

What about your decisions?

The world operates in real-time

The speed of business has 
increased, as organizations need 
to respond to and make 
decisions based on what is 
happening now, not what 
happened yesterday, last week, 
or last month.

IDC Marketscape: Worldwide Analytic Stream Processing 
Software 2024

Organizations have more 
streaming data every year [...]. 
This information is most valuable 
when it is used as soon as it 
arrives to improve real-time or 
near-real-time business 
decisions.

Gartner Market Guide for Event Stream Processing 2023

3



©2024 Databricks Inc. — All rights reserved

NEW OPPORTUNITIES IN REAL-TIME

Transactional 
records

Point of sale (POS)
Banking transactions
Airline reservations
Call center records

Interactions
Web clicks

Social posts
Emails

Instant messages

IoT events
Sensors

Geolocation
Machine logs

Mobile devices

Third-party
News feeds

Weather
Market data

Real-time traffic
Fraud

detection
Personalized 

offer
Vaccine 

distribution

Predictive
maintenance

Smart 
pricing

In-game 
analytics

Connected cars
and smart devices

Content
recommendations

Every organization generates 
vast amounts of real-time data

Creating opportunities for new 
kinds of real-time applications

4



©2024 Databricks Inc. — All rights reserved©2024 Databricks Inc. — All rights reserved

DATABRICKS LEADS 
STREAMING

5



©2024 Databricks Inc. — All rights reserved

STREAMING IS BIGGER AT DATABRICKS

Millions of 
jobs

run every day

6

Weekly Streaming Job Runs



©2024 Databricks Inc. — All rights reserved

• Developer Experience
• Code friendly to low code to no code

• Available to multiple personas

• Integration with unity catalog
• Event discovery, Schema registry

• Stream lineage, Sensitive data 

tagging

• Go-to-market focus
• Expansion into operational workloads

DATABRICKS IS THE BEST CHOICE
And it's not just us saying this

7



©2024 Databricks Inc. — All rights reserved

Databricks is built on Apache Spark

More than 36M Maven downloads/month

Unified engine for batch and streaming

Fault tolerant

Low latency and cost effective

Easy to use and powerful operators

Stateful processing

8



©2024 Databricks Inc. — All rights reserved

PROJECT LIGHTSPEED OVER THE YEARS
Over 30 streaming features released in <2 years

Release Performance Functionality Connectors

DBR 11
Q4 2022

State re-balancing
Offset management

Auto Loader avro support 
applyInPandasWithState
Python query listener

Amazon Kinesis 
Enhanced Fanout 
(EFO)

DBR 12
Q1 2023

Photon support for 
ForEachBatch

Watermark support in SQL
Streaming support with 
UC on Shared clusters

Schema Registry Auth
Streaming for Delta 
Sharing table

9



©2024 Databricks Inc. — All rights reserved

Releases Performance Functionality Connectors

DBR 13
Q2 to Q3 
2023 

Bounded memory usage
RocksDB read/write 
improvements 
Changelog checkpointing 
Adaptive query execution
Skip Delta table modifications

Stateful operator 
chaining
Drop duplicates within 
watermark 

Google Cloud Pub/Sub
IAM support for Amazon 
MSK
Use UC to manage 
external Kafka credentials

DBR 14
Q4 to Q1 
2024 

Pushdown filters for Delta State Reader API
Avro schema evolution

Pulsar Connector, Stream 
from UC views

10

PROJECT LIGHTSPEED OVER THE YEARS
Over 30 streaming features released in <2 years



©2024 Databricks Inc. — All rights reserved

1. Streaming ETL on DLT Serverless with Stream Pipelining
2. Low-latency operational use cases with new Databricks capabilities
3. Custom Integrations with new Python Data Source API
4. Arbitrary Stateful Processing with new transformWithState API

PROJECT LIGHTSPEED GOES HYPERSPEED
Today we are going to cover…



©2024 Databricks Inc. — All rights reserved©2024 Databricks Inc. — All rights reserved

FASTEST 
INGESTION INTO 
THE LAKEHOUSE

12



©2024 Databricks Inc. — All rights reserved

• Delta Live Tables (DLT) with serverless compute
• Declarative data pipelining framework in Databricks Data Intelligence Platform
• With serverless, simplifies operational burden
• Uses Photon engine and supports stream pipelining

• Jobs Compute for Spark Structured Streaming
• Traditional compute offering from Databricks
• Compute instances are hosted in the customer’s cloud, managed by Databricks
• Uses Photon for the evaluation

• Other Open Source Options
• Many options available - Apache Flink, custom Rust writer
• We used Apache Flink from a major cloud service provider

BENCHMARKING INGESTION OPTIONS
DLT Serverless, Jobs Compute, Open source alternatives

13



©2024 Databricks Inc. — All rights reserved

• Data pre-populated in Kafka
• Streaming engine

• Deserializes the JSON string
• Projects incoming data into strongly 

typed structure
• Persists the data in a Delta table

• Run queries against the Delta table

BENCHMARK FLOW OF OPERATIONS
Apache Kafka to Delta as fast we we can



©2024 Databricks Inc. — All rights reserved

• Ingestion Duration
• Streaming the data to the Delta table via Kafka
• Happy path - we assume no node failure occur
• Failure and Recovery - we measure the impact of a node loss

• Query performance
• Measure the performance of executing a set of queries on ingested Delta tables

WHAT WE MEASURED?
Ingestion, ingestion with failures, and read query performance

15



©2024 Databricks Inc. — All rights reserved

RESULTS - INGESTION DURATION
DLT Serverless is 29% faster then classic compute and 63% faster then Flink

16



©2024 Databricks Inc. — All rights reserved

RESULTS - INGESTION WITH FAILURES
Failures increase duration by 8% for DLT, 13% for classic, >35% for Flink 

17



©2024 Databricks Inc. — All rights reserved

RESULTS - READ PERFORMANCE
Up to 600% faster read performance with Databricks

18



©2024 Databricks Inc. — All rights reserved

• Improve performance up to 3x
• Reduces latency by up to 30% 
• Works for all streaming queries in 

serverless

STREAM PIPELINING
Up to 3x performance improvement for stateful streaming queries

19



©2024 Databricks Inc. — All rights reserved©2024 Databricks Inc. — All rights reserved 20

AVAILABLE TODAY 
IN SERVERLESS



©2024 Databricks Inc. — All rights reserved©2024 Databricks Inc. — All rights reserved

LOW LATENCY
OPERATIONAL 
USE CASES

21



©2024 Databricks Inc. — All rights reserved

● How many active logins do I have per streaming account? 
● Where are my operators of industrial equipment? 
● Do I need to send a promotion to a user struggling to purchase? 

Business-critical operational use cases need consistently low latency

OPERATIONAL USE CASES

22



©2024 Databricks Inc. — All rights reserved

● Real-time mode provides end-to-end processing latencies in the ms for 
stateful and stateless use cases

● Works with the same familiar Structured Streaming operators
● Real-time mode works by reserving task capacity and enabling results to 

flow seamlessly between stages and downstream
● Available in Private Preview in H2 2024

ANNOUNCING REAL-TIME MODE
Real-time mode provides latency in the ms across use cases

23



©2024 Databricks Inc. — All rights reserved

SO… HOW FAST IS IT?

24

p50 latency in 10s of ms and p99 latency 100-200ms (goal is <100ms)



©2024 Databricks Inc. — All rights reserved

STREAMING LATENCY SPECTRUM

40 ms
ultra real-time

200 ms
real-time

1 second Seconds Minutes

Operational Use Cases

Streaming Ingestion & ETL

Micro-batch mode

Real-time mode

25



©2024 Databricks Inc. — All rights reserved©2024 Databricks Inc. — All rights reserved 26

PRIVATE PREVIEW 
IN Q4 2024



©2024 Databricks Inc. — All rights reserved©2024 Databricks Inc. — All rights reserved

CUSTOM PYTHON 
SOURCES AND 
SINKS

27



©2024 Databricks Inc. — All rights reserved

• SPIP: Python Data Source API (SPARK-44076)

• Fully open source: spark/python/pyspark/datasource.py

• Available in Spark 4.0 preview version and Databricks Runtime 15.2

• Support both batch and streaming, read and write

28

Python Data Source API
Spark Python

https://issues.apache.org/jira/browse/SPARK-44076
https://github.com/apache/spark/blob/master/python/pyspark/sql/datasource.py


©2024 Databricks Inc. — All rights reserved©2024 Databricks Inc. — All rights reserved 29

PUBLIC PREVIEW 
AVAILABLE TODAY



©2024 Databricks Inc. — All rights reserved©2024 Databricks Inc. — All rights reserved

ARBITRARY STATEFUL 
PROCESSING IN 
STREAMING

30



©2024 Databricks Inc. — All rights reserved

State is: 

• Information maintained for future 
use

• Updated by tasks in memory
• Backed up locally (i.e., RocksDB) 

and distributed storage (i.e., object 
storage)

• Versioned between micro-batches

STATEFUL STREAM PROCESSING
Stateful Streaming queries combine multiple records together

Task

Local State

Checkpoint

31



©2024 Databricks Inc. — All rights reserved

DIFFERENT TYPES OF STATEFUL OPERATORS

Built-in operators like:

• Windowed aggregations like tumbling 
and session

• Joins including stream-static and 
stream-stream 

• Deduplication

Predefined Logic Arbitrary Logic

Provide per-key user-defined operators

Specialized APIs like:

• flatMapGroupsWithState
• mapGroupsWithState

Structured streaming supports both predefined and arbitrary stateful 

32



©2024 Databricks Inc. — All rights reserved

• Supports a single user defined 
state object per grouping key 

• State object can be updated 
while evaluating the current 
group, and updated value will 
be available in next trigger.

val ds = 
spark.readStream.json(path).as[CreditCardTransaction]

ds.groupByKey(_.cardId)

.flatMapGroupsWithState[CreditCardTransactionState, 
CreditCardTransaction](

OutputMode.Append(), GroupStateTimeout.NoTimeout())(

(_, txns, groupState) => {

// read state, compute new average, and save to state

txns.filter(t => t.txAmountDollars > avg).iterator

}

)

33

(flat)MapGroupsWithState
Powerful arbitrary stateful processing



©2024 Databricks Inc. — All rights reserved

Values stored in GroupState are single types and 
cannot support data structures like List, Map etc 
efficiently. Current approach requires users to 
read/update the entire data structure.

Prevents users from splitting state (for a grouping 
key) into multiple logical instances, which can be 
read/updated independently. 

Lack of Composite Types Lack of Data Modelling Flexibility

PERF AND CAPABILITY LIMITATIONS
Which end up adding a lot of complexity to user code

Does not support state eviction timers or per state 
variable eviction

Does not support changes to state schema once 
the streaming query has started.

No granular eviction control No state schema evolution

34



©2024 Databricks Inc. — All rights reserved

WE NEED LAYERED, 
FLEXIBLE, & 
EXTENSIBLE 
STATEFUL PROCESSING



©2024 Databricks Inc. — All rights reserved

INTRODUCING transformWithState
User defined arbitrary stateful processing with a layered state API

36

transformWithState

Stateful Processor

State Store Provider (RocksDB)

Stateful Processor Handle

Composite Types

Single 
Value

List Map …

State Timers

Proc.
Time

Event 
Time

Metadata

Query 
Info



©2024 Databricks Inc. — All rights reserved

transformWithState Code Example

private var _cardTxnState: MapState[String, String] = _
override def init(outputMode: OutputMode): Unit = {

_cardTxnState = getHandle.getMapState("cardTxnState", Encoders.STRING)
}

private def isFraud(txn: CreditCardTransaction): Boolean = {
// check if txn looks suspicious

}

override def handleInputRows(key: String, inputRows: Iterator[CreditCardTransaction], timerValues: TimerValues): 
Iterator[CreditCardTransaction] = {

inputRows.filter(txn =>
!isFraud(txn)

)
}

SIMPLE CODE EXAMPLE

37



©2024 Databricks Inc. — All rights reserved

COMPOSITE DATA TYPES

● ValueState
● ListState
● MapState

State Variables Advantages

● Flexibility in Data Modelling
● Optimized read/writes

○ Appends list without read - update - write
○ Efficient key/value access for MapState

● Allows adding & removing state 
variables for a query with same 
checkpoint location

38



©2024 Databricks Inc. — All rights reserved

● Support for event-time and processing-time based timers
● Expired timers triggered in the earliest available microbatch
● Timers are checkpointed as part of the store checkpoint
● Multiple timers per grouping key is supported
● Timers are de-duplicated for same timestamp

STATE TIMERS
Flexible and extensible approach to expiring state

39



©2024 Databricks Inc. — All rights reserved

• Allows running multiple stateful operators inside a single streaming query
• Users can define event time column which will be emitted from the stateful 

operator, and allow chaining

OPERATOR CHAINING

Read
Stream

Write
Stream

transform
WithState

transform
WithState

40



©2024 Databricks Inc. — All rights reserved

Set state TTL and state will be 
automatically cleaned up

Define TTL for a specific state 
variables

Evaluated on read and returned if 
valid, purged if expired

State Time-to-Live (TTL) State Initialization Schema Evolution

Initialize state from existing query or 
Spark Dataset

Enables you to move to the new API 
and keep existing query state

Define their state using Scala case 
classes, Java POJOs 

Modify case class schema (as long 
as its compatible with with existing 
schema)

Restart streaming query with same 
checkpoint location

EVEN MORE FUNCTIONALITY

41



©2024 Databricks Inc. — All rights reserved©2024 Databricks Inc. — All rights reserved 42

PUBLIC PREVIEW 
IN Q3 2024



©2024 Databricks Inc. — All rights reserved

WHERE ARE WE GOING NEXT?
Project Lightspeed goes… ludicrous speed, plaid?

Release Performance Functionality Connectors

Future! Catered performance 
features per use case

State features like 
repartitioning, checkpoint CRUD 
APIs

Complex event processing

Expanding DLT’s use cases

Additional sinks for 
operational use cases

Support for multiple sinks / 
fan out

Hybrid batch and data 
sources

We listen to our customers, directionally this is what they are telling us.

43



©2024 Databricks Inc. — All rights reserved

RECOMMENDED STREAMING SESSIONS
Attend in person or view them later online

Session Date, Time

Your Guide to Data Engineering on the Data Intelligence Platform Tues, 6/11, 9:00 AM

Delta Live Tables in Depth: Best Practices for Intelligent Data Pipelines Wed, 6/12, 2:50 PM

Databricks Streaming: Project Lightspeed Goes Hyperspeed Wed, 6/12, 4:00 PM

Getting Started with DLT Pipelines Wed, 6/12, 5:10 PM

Introducing Databricks’ New Native Ingestion Connectors Thur, 6/13, 11:20 AM

Streaming Data Pipelines: From Supernovas to LLMs Thur, 6/13, 12:30 PM

Introducing the New Python Data Source API for Apache Spark Thur, 6/13, 2:50 PM

44



Learn more at the summit!

• We kindly request your valuable 
feedback on this session.

• Please take a moment to rate and 
share your thoughts about it.

• You can conveniently provide 
your feedback and rating through 
the Mobile App.

Tells us what you think What to do next?

• Visit the Learning Hub Experience at 
Moscone West, 2nd Floor!

• Take complimentary certification at 
the event; come by the Certified 
Lounge

• Visit our Databricks Learning website 
for more training, courses and 
workshops! databricks.com/learn

Get trained and certified

• Discover more related sessions in the 
mobile app!

• Visit the Demo Booth: Experience 
innovation firsthand!

• More Activities: Engage and connect 
further at the Databricks Zone!

Databricks 
Events App

https://www.databricks.com/learn/


©2024 Databricks Inc. — All rights reserved 46


	This information is provided to outline Databricks’ general product direction and is for informational purposes only. Customers who purchase Databricks services should make their purchase decisions relying solely upon services, features, and functions that are currently available. Unreleased features or functionality described in forward-looking statements are subject to change at Databricks discretion and may not be delivered as planned or at all
	Project Lightspeed goes Hyperspeed
	What about your decisions?
	NEW OPPORTUNITIES IN REAL-TIME
	DATABRICKS LEADS STREAMING
	STREAMING IS BIGGER AT DATABRICKS
	DATABRICKS IS THE BEST CHOICE
	Databricks is built on Apache Spark
	PROJECT LIGHTSPEED OVER THE YEARS
	PROJECT LIGHTSPEED OVER THE YEARS
	PROJECT LIGHTSPEED GOES HYPERSPEED
	FASTEST INGESTION INTO THE LAKEHOUSE
	BENCHMARKING INGESTION OPTIONS
	BENCHMARK FLOW OF OPERATIONS
	WHAT WE MEASURED?
	RESULTS - INGESTION DURATION
	RESULTS - INGESTION WITH FAILURES
	RESULTS - READ PERFORMANCE
	STREAM PIPELINING
	AVAILABLE TODAY IN SERVERLESS
	LOW LATENCYOPERATIONAL USE CASES
	OPERATIONAL USE CASES
	ANNOUNCING REAL-TIME MODE
	SO… HOW FAST IS IT?
	STREAMING LATENCY SPECTRUM
	PRIVATE PREVIEW IN Q4 2024
	CUSTOM PYTHON SOURCES AND SINKS
	Python Data Source API
	PUBLIC PREVIEW AVAILABLE TODAY
	ARBITRARY STATEFUL PROCESSING IN STREAMING
	STATEFUL STREAM PROCESSING
	DIFFERENT TYPES OF STATEFUL OPERATORS
	(flat)MapGroupsWithState
	PERF AND CAPABILITY LIMITATIONS
	WE NEED LAYERED, FLEXIBLE, & EXTENSIBLE STATEFUL PROCESSING
	INTRODUCING transformWithState
	SIMPLE CODE EXAMPLE
	COMPOSITE DATA TYPES
	STATE TIMERS
	OPERATOR CHAINING
	EVEN MORE FUNCTIONALITY
	PUBLIC PREVIEW IN Q3 2024
	WHERE ARE WE GOING NEXT?
	RECOMMENDED STREAMING SESSIONS
	Learn more at the summit!
	Slide Number 46

